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Flow past a cylinder: shear layer instability and drag crisis
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SUMMARY

Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady in-
compressible two-dimensional Navier–Stokes equations via a stabilized �nite element formulation. It
is well known that beyond Re∼ 200 the �ow develops signi�cant three-dimensional features. There-
fore, two-dimensional computations are expected to fall well short of predicting the �ow accurately
at high Re. It is fairly well accepted that the shear layer instability is primarily a two-dimensional
phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite
well with the Re0:67 variation observed by other researchers from experimental measurements. The main
objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of
drag at Re∼ 2× 105) and the instability of the separated shear layer. As Re is increased the transition
point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the
transition point is located very close to the point of �ow separation. As a result, the shear layer eddies
cause mixing of the �ow in the boundary layer. This energizes the boundary layer and leads to its
reattachment. The delay in �ow separation is associated with narrowing of wake, increase in Reynolds
shear stress near the shoulder of the cylinder and a signi�cant reduction in the drag and base suction
coe�cients. The spatial and temporal power spectra for the kinetic energy of the Re=106 �ow are
computed. As in two-dimensional isotropic turbulence, E(k) varies as k−5=3 for wavenumbers higher
than energy injection scale and as k−3 for lower wavenumbers. The present computations suggest that
the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent
state. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow past a circular cylinder is associated with various instabilities. These instabilities
involve the wake, separated shear layer and boundary layer. Williamson [1] has given a
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comprehensive description of the �ow phenomena at di�erent Reynolds numbers (Re). Upto
Re∼ 47, the �ow is steady with two symmetric vortices on each side of the wake centre line.
The �rst wake instability, manifestation of a Hopf bifurcation, occurs at Re∼ 47. For Re¿47,
although it remains laminar, the �ow becomes unsteady and asymmetric. Von Karman vortex
shedding is observed for slightly larger Re. At Re∼ 190, three-dimensional instabilities, such
as formation of vortex loops, deformation of primary vortices and stream wise and span wise
vortices, appear in wake. The wake �ow undergoes a series of complex three-dimensional
instabilities, eventually making it turbulent. Beyond a certain critical Re, the shear layer
separating from the upper and lower surface of the cylinder, starts becoming unstable via the
Kelvin–Helmholtz mode of instability. The transition point, beyond which the separated layer
becomes unstable, moves upstream with increase in Re. At Re∼ 2× 105, the boundary layer
on the cylinder surface undergoes a transition from laminar to turbulent. This transition leads
to a delay of the separation of �ow from the cylinder surface causing a substantial reduction
in the drag force that the cylinder experiences. This is often referred to as Drag crisis.
Bloor [2] observed the shear layer instability for Re=1300 and above. The unstable �ow

structures were referred to as ‘transition wave’ and identi�ed with Tollmein–Schlichting waves.
The ratio of the frequencies of transition waves and primary vortex shedding was found to be
proportional to Re0:5. Gerrard [3] observed the shear layer instability at Re=350 and higher.
Wei and Smith [4] observed the presence of secondary vortices, similar to transition waves,
for 12006Re611 000. The ratio of frequencies associated with the shedding of secondary and
primary vortices was found to vary, approximately, as Re0:87. Kourta et al. [5] observed the
non-dimensional shedding frequency of the secondary vortices directly proportional to Re0:5 for
2000¡Re¡16 000. Unal and Rockwell [6] reported an experimental study of vortex shedding
from a circular cylinder for 4406Re65040. According to their �ow visualization experiments,
the shear layer instability starts becoming evident at Re=1900. Braza et al. [7] showed the
development of Tollmein–Schlichting transition waves in the separated shear layer via two-
dimensional computations for 20006Re610 000. They concluded that the origin of the shear-
layer instability, which leads to mixing layer eddies, is predominantly two dimensional. The
ratio of the computed frequencies of the transition waves and vortex shedding agrees with
experimental data of Bloor [2] and Kourta [5] and is quite close to experimental works of
Wei and Smith [4].
Prasad and Williamson [8] found that the spanwise end conditions, which control the pri-

mary mode of vortex shedding, also a�ect the shear layer instability. For end conditions
that result in parallel mode of shedding, shear layer instability starts at Re≈ 1200 while this
value is 2600 for the end conditions that lead to the oblique shedding mode. The normalized
shear layer frequency, equivalent to the non-dimensional shedding frequency of the secondary
vortices as used by Wei and Smith [4], follows the Re0:67 power law. In fact, Prasad and
Williamson [8] plotted not only their own data but also that from all the previous investiga-
tors and found that the Re0:67 power law gives a much closer �t than the Re0:5 law proposed
earlier, from approximate analysis. In that sense, the Re0:67 power law represents almost all
the experimental data that exists. They also observed that the shear layer �uctuations are in-
termittent and become stronger with increase in Re. Our recent computations for a cylinder,
with a ‘slip’ splitter plate occupying the wake centre line, show that this leads to inhibition
of the primary wake instability. Therefore, the shear layer instability can be clearly observed
in such a set-up. Unal and Rockwell [9] also observed the shear layer instability for certain
locations of the leading edge of the splitter-plate.
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Depending on the free-stream turbulence and surface roughness, beyond a certain critical
Re, the boundary layer on the cylinder becomes turbulent [10, 11]. It is accompanied with
a signi�cant reduction in drag and is often referred to as drag crisis. It also results in an
increase in the base pressure coe�cient. The drag coe�cient for the subcritical �ow is ∼ 1:2
and it reduces to ∼ 0:3 for the supercritical �ow. For the transcritical �ow [10], it again
increases to ∼ 0:7. Achenbach and Heinecke [11] presented the variation of Rec for various
values of the surface roughness parameter. For a smooth cylinder, Rec is approximately equal
to 3× 105. With increase in surface roughness, the Rec decreases and the mean drag coe�cient
at Rec increases. Roshko [10] observed, from experiments, that for sub-critical conditions the
boundary layer separation is laminar. As Re is increased, beyond the critical value, transition
in boundary layer moves ahead of the laminar separation point. The turbulent boundary layer
can withstand a greater pressure rise and delays separation.
Selvam [12] presented his results for two-dimensional large eddy simulation (LES) for �ow

past a cylinder. The reduction in the drag coe�cient was observed but not to the same extent as
indicated by the measurements. Further, the reduction was achieved only when the Van Driest
damping factor is utilized at the wall. Tamura et al. [13] carried out computations without any
turbulence model with a third-order upwind �nite di�erence scheme in two and three dimen-
sions. Their computations have been able to predict drag crisis for certain grids. However, on
increasing the number of grid points, the drag coe�cient at Re=106 increases signi�cantly.
Cantwell and Coles [14] measured various quantities relevant to the Reynolds stresses for

the Re=1:4× 105 �ow corresponding to the high subcritical state. In such a �ow large co-
herent eddies can be studied in their natural state. These eddies are turbulent line vortices
which are produced and shed in an essentially regular manner. Except for some dispersion,
the vortices are not subject to interactions that might obscure their identity. Reynolds stress
receives contribution from, both, the random and periodic motion of the �ow. They ob-
served that the contribution of the random turbulent �uctuations, to the Reynolds stress,
is much larger than that from the organized large eddies. Periodic stress patterns show a
strong symmetry with respect to the wake centre line and remarkable indi�erence to local
turbulence.
In the present study, two-dimensional �ow past a circular cylinder is simulated for Re=100–

107 using a stabilized �nite element formulation. It is well known that beyond Re∼ 190 the
�ow ceases to be two dimensional. In that sense, the present two-dimensional computations
are expected to fall well short of accurately predicting the various quantities associated with
�ows at high Re. The objective of the present work is to investigate a possible connection
between the shear layer instability and drag crisis. It has been reported in References [1, 7]
that the shear layer instability is primarily two dimensional. A very �ne �nite element mesh,
that is capable of resolving the boundary layer at the cylinder surface and the �ow structures
associated with the shear layer vortices, is utilized. Computations are carried out at various
Re to study the shear layer instability. The variation of the frequency of the shear layer vor-
tices with Re is compared to the trends from experimental studies. Good match between the
present and published results is observed. It is found that the present computations are able
to reproduce the signi�cant drop in the drag coe�cient at the critical Re. The results indicate
that the shear layer instability plays an important role in this phenomenon. In this paper, a
possible mechanism for the phenomenon is discussed. For high subcritical �ow the transition
point, beyond which the separated shear layer is unstable, is located shortly downstream of
the point of laminar separation of the boundary layer from the cylinder surface. At Rec the
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transition point moves very close to the separation point and causes local remixing in the
boundary layer leading to reattachment of �ow.
Direct numerical simulation (DNS) of �ows at large Re is not possible owing to the heavy

demands on computational resources it places. Beaudan and Moin [15], have observed that
computations with the Reynolds averaged equations pose great di�culty in predicting the
mean forces on the cylinder and the near-wake mean �ow statistics. Large eddy simulation
(LES), in conjunction with a suitable turbulence model, is a viable proposition. Kravchenko
and Moin [16] carried out LES for the Re=3900 �ow past a cylinder using a high-order
accurate scheme. Good match is seen between their computational results and experiments.
They also simulated the �ow without the subgrid scale model. No signi�cant di�erence is
found in the mean-velocity pro�les from the two cases. However, slower decay of energy at
large wavenumbers for the simulations without subgrid model is observed in one-dimensional
spectrum of velocity distribution at a downstream location. Mittal and Moin [17] reported
that the numerical viscosity removes substantial energy from the high wavenumber regime
for higher-order upwind-biased �nite di�erence schemes. They also observed that a central
di�erence scheme does not have such problem but it poses additional di�culties related to
high dispersion errors. Akin et al. [18] have shown that the numerical viscosity generated by
the stabilization terms for the �nite element formulation with bilinear interpolation functions
is much higher than the eddy viscosity generated by Smagorinsky turbulence model except
in regions very close to the cylinder. In the present study, computations are carried out with
and without a Smagorinsky model for �ow past a cylinder at Re=106. The mean pro�les as
well as the �uctuating quantities are compared. It is found that the results from the two sets
of computations are almost indistinguishable. Therefore, for the computations in this paper,
no turbulence model is employed.
The governing equations for the �uid �ow are the incompressible Navier–Stokes equations.

They are solved via a stabilized �nite element formulation in the primitive variables. Equal-
in-order linear basis functions for velocity and pressure are used and a three point Gaussian
quadrature is employed for numerical integration. The non-linear equation systems resulting
from the �nite element discretization of the �ow equations are solved using the generalized
minimal residual (GMRES) technique in conjunction with diagonal preconditioners.

2. GOVERNING EQUATIONS

Let �⊂Rnsd and (0; T ) be the spatial and temporal domains respectively, where nsd is the
number of space dimensions, and � denote the boundary �. The spatial and temporal co-
ordinates are denoted by x and t. The Navier–Stokes equations governing incompressible
�uid �ow are

�
(
@u
@t
+ u ·Bu − f

)
−B · �=0 on � for (0; T ) (1)

B · u=0 on � for (0; T ) (2)

Here, �; u; f and � are the density, velocity, body force and the stress tensor, respectively.
The stress tensor is written as the sum of its isotropic and deviatoric parts:

�= − pI+ T; T=2�U(u); U(u)= 1
2((Bu) + (Bu)

T) (3)
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where p and � are the pressure and coe�cient of dynamic viscosity, respectively. Both the
Dirichlet and Neumann type boundary conditions are accounted for, represented as

u= g on �g; n · �= h on �h (4)

where, �g and �h are complementary subsets of the boundary �. The initial condition on the
velocity is speci�ed on �:

u(x; 0)= u0 on � (5)

where, u0 is divergence free.
In addition to the mean �ow, it is useful to study the Reynolds stresses (u′u′, v′v′ and u′v′).

Here, u′ and v′ are the �uctuations in the components of the velocity �eld as de�ned below,
following the decomposition proposed by Hussain and Reynolds [19]:

u(x; t)= �u(x) + u′(x; t) (6)

Here �u(x) is the mean velocity �eld, and u′(x; t) is the unsteady part of the velocity with
contributions from organized wave and turbulence.

3. FINITE ELEMENT FORMULATION

Consider a �nite element discretization of � into sub domains �e, e=1; 2; : : : ; nel, where nel is
the number of elements. Based on this discretization, for velocity and pressure we de�ne the
�nite element trial function spaces Sh

u and Sh
p , and weighting function spaces Vh

u and Vh
p .

These function spaces are selected, by taking the Dirichlet boundary conditions into account,
as subsets of [H1h(�)]nsd and H1h(�), where H1h(�) is the �nite dimensional function space
over �. The stabilized �nite element formulation of Equations (1) and (2) is written as
follows: �nd uh ∈ Sh

u and ph ∈ Sh
p such that ∀wh ∈ Vh

u ; q
h ∈ Vh

p∫
�
wh · �

(
@uh

@t
+ uh ·Buh − f

)
d� +

∫
�
U(wh) : �(ph; uh) d� +

∫
�
qhB · uh d�

+
nel∑
e=1

∫
�e

1
�
(�SUPG�uh ·Bwh + �PSPGBqh)

·
[
�
(
@uh

@t
+ uh ·Buh − f

)
−B · �(ph; uh)

]
d�e

+
nel∑
e=1

∫
�e
�B · wh�B · uh d�e=

∫
�h

wh · hh d� (7)

In the variational formulation given by Equation (7), the �rst three terms and the right-hand
side constitute the Galerkin formulation of the problem. The �rst series of element level
integrals are the SUPG and PSPG stabilization terms added to the variational formulations.
In the current formulation �PSPG is the same as �SUPG and is given as

�=

((
2‖uh‖
h

)2
+
(
4�
h2

)2)−1=2
(8)
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The second series of element level integrals are added to the formulation for numerical stability
at high Reynolds numbers. This is a least squares terms based on the continuity equation.
The coe�cient � is de�ned as

�=
h
2
‖uh‖z (9)

where

z=



(
Reu
3

)
; Reu63

1; Reu¿3
(10)

and Reu is the cell Reynolds number. Both stabilization terms are weighted residuals, and
therefore maintain the consistency of the formulation. h is the element length and various
de�nitions have been used by researchers in the past. Mittal [20] conducted a systematic
numerical study to investigate the e�ect of high aspect ratio elements on the performance
of the �nite element formulation for three commonly used de�nitions of h. The one which
results in the least sensitivity of the computed �ow to the element aspect ratio has been used
for computations in the present work. According to this de�nition, the element length is equal
to the minimum edge length of a triangular (three noded) element.
The time discretization of the variational formulation is done via the generalized trapezoidal

rule. For unsteady computations, the relevant parameter is set to give second-order accuracy
in time. Equal in order basis functions for velocity and pressure (the P1P1 element) are used
and a three point quadrature is employed for numerical integration. The non-linear equation
systems resulting from the �nite element discretization of the �ow equations are solved using
the GMRES technique [21] in conjunction with a diagonal preconditioner. A matrix free ver-
sion of the GMRES algorithm is utilized to reduce the memory requirement. In this procedure,
the result of matrix vector products in the GMRES algorithm is direct computed which avoids
the explicit formation and storage of the element level matrices.

4. RESULTS AND DISCUSSIONS

A cylinder, of diameter D, is placed in a domain whose outer boundary is a rectangle. The
centre of the cylinder is located at the origin of the co-ordinate system. The free-stream �ow
is along the x axis. The Reynolds number, Re, is based on the diameter of the cylinder,
free-stream velocity and viscosity of the �uid. In all the �gures in this paper, the shading in
gray scale represents the magnitude of the associated �ow quantity. While the white shade
shows a low value, the darker shade represents a higher value. The contour lines in black
colour indicate a positive value of the variable and a negative value is shown by lines in
white colour.

4.1. Boundary conditions

Free-stream values are assigned for the velocity at the upstream boundary. No slip condition
for the velocity is applied on the cylinder boundary. At the downstream boundary a Neumann
type boundary condition for the velocity is speci�ed that corresponds to zero viscous stress
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Table I. Flow past a cylinder at various Re: details of the �nite element mesh used.

Mesh Nodes Elements h1r =D Nt Domain size

M1 11384 22654 1:5× 10−2 64 50D× 50D
M2 22403 44454 2× 10−5 300 38D× 16D
M3 34613 68858 5× 10−3 320 38D× 16D
M4 47011 93574 2× 10−5 400 38D× 16D
M5 116166 231484 2× 10−6 800 38D× 16D

vector. On the upper and lower boundaries the component of stress vector along these bound-
aries and the velocity normal to them are assigned zero values.

4.2. Finite element mesh

The �nite element mesh consists of two parts: a structured grid close to the cylinder and an
unstructured mesh in the remaining domain. The structured mesh allows for having adequate
control on the resolution of the �ow in the boundary layer. It consists of Nt nodes in the
circumferential direction. The radial thickness of the �rst layer of elements on the cylinder
boundary is denoted by h1r . The unstructured mesh is generated via the Delaunay’s triangulation
technique. This kind of a hybrid mesh is useful in handling complex geometries by providing
adequate resolution close to the body without requiring the same distribution of grid points in
the remaining domain. This results in signi�cant saving of computational resources as opposed
to computations on a structured mesh with similar resolution close to the body.
Given in Table I are the details of the various meshes used in the present study. Figure 1

shows the close-up views of a typical mesh around the cylinder. Most of the computations
in this paper have been done with mesh M4 which consists of 47 011 nodes and 93 574
elements. The time-averaged drag-coe�cient ( �Cd) for Re=106 obtained with the mesh M4
is 0:591. To check the convergence of the computations with respect to spatial resolution, the
�ow is also computed with a more re�ned mesh, M5. Mesh M5 consists of 116 166 nodes
and 231 484 elements. The value of ( �Cd) with mesh M5 is 0:607. Other mean and �uctuating
quantities also show a good match between the results from the two meshes. This establishes
the adequacy of mesh M4 to resolve most of the large-scale structures of the �ow in this
range of Re.

4.3. Large eddy simulation vs model free calculations

It is not possible, with the present computational resources, to conduct DNS for the range
of Re that are being attempted in this study. LES in conjunction with a suitable sub-grid
scale model seems like a viable proposition. A LES with a constant coe�cient Smagorinsky
model was attempted for Re=106. The dynamic coe�cient of viscosity, �, is locally modi�ed
using a Smagorinsky turbulence model as �e�ective =� + �(Che)2

√
2U(u) : U(u). Here C is a

constant equal to 0:1 and he is the element length scale. Mesh M4, with 47 011 nodes and
93 574 elements, is employed for the computations. Computations are also carried out without
the turbulence model. Figure 2 shows the time averaged vorticity, pressure, u′u′, v′v′ and
u′v′ �elds for the model free calculations (�rst column) and LES (second column). It can
be observed that the results from the two simulations are very comparable. Other quantities,
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Figure 1. Flow past a cylinder: successive close up views of the �nite element mesh M5 with 116 166
nodes and 231 484 triangular elements.

for example, the time averaged drag and base pressure coe�cients are also very comparable.
They are shown in later �gures in the paper. This is consistent with the observations of
Akin et al. [18] who found that the numerical di�usion due to the stabilization terms in
the �nite element formulation, with bilinear interpolation functions, is much higher than the
eddy viscosity generated by Smagorinsky turbulence model except in regions very close to
the cylinder. In view of these observations, all further simulations are carried out without
any turbulence model. It is quite possible that the situation may change for three-dimensional
simulations or with computations employing higher order interpolation functions. These issues
are under investigation.
We wish to reiterate here that two-dimensional LES by no means captures all the details of

an inherently three-dimensional �ow. The attempt in this paper is to investigate the possibility
of a connection between the shear layer instability (which is known to be two dimensional)
and drag crisis and not to model=resolve the three-dimensional e�ects. In addition to LES, there
are other approaches that have shown promise in solving three-dimensional unsteady �ows.
For example, the interested reader may see the work by Travin et al. [22] who have simulated
�ow past a circular cylinder via detached eddy simulation for laminar and turbulent separation.
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Figure 2. Re=106 �ow past a cylinder using mesh M4: the time averaged vorticity and pressure
�elds and distribution of Reynolds stresses for two-dimensional LES with a Smagorinsky model

(right) and model free (left) calculations.

Reynolds numbers chosen for laminar separation are 5:0× 104 and 1:4× 105 while those for
turbulent separation are 1:4× 105 and 3:0× 106. The results of turbulent separation cases, i.e.
drag, skin friction, shedding frequency and pressure match well with the experimental results.

4.4. General overview of the �ow

Figures 3 and 4 show the variation, with Re, of the time-averaged drag and base suction
coe�cient, respectively. Data from computations on various �nite element grids has been
shown along with experimental results from other researchers. It is observed that the values
from present computations match well with the results from experiments for Re¡200. For
example, the Strouhal number (St: non-dimensional vortex shedding frequency based on the
dominant frequency in the time variation of lift coe�cient) for Re=100, from the present
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Figure 3. Flow past a cylinder: variation of the time averaged drag coe�cient with Re. The experimental
data from Weiselberger (1921) has been taken from Roshko [10].

Figure 4. Flow past a cylinder: variation of the time-averaged base suction coe�cient (−CPB) with Re.
The experimental data shown is from Williamson and Roshko [23], Norberg [24], Flaschbart (1932)

taken from Roshko [25] and Shih et al. [26].

two-dimensional computations, is 0:1643. Williamson [27] measured St=0:1648 for parallel
shedding and the value reported by Kravchenko et al. [28] and Persillon and Braza [29]
from their computations is 0:164. The amplitude of the lift coe�cient from the present com-
putations is 0:319 and it compares well with the value reported by Kravchenko et al. [28]
(=0:314). For Re=200, the values for �CD and St from the present two-dimensional com-
putations are 1:327 and 0:1947, respectively. The corresponding values from Posdziech and
Grundmann [30] from their computational studies are 1:3132 and 0:1944. The experimen-
tally measured value for St is 0:196 [31]. Again, the comparison with the present results is
excellent.
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Beyond Re∼ 180 the wake �ow undergoes three-dimensional transitional instabilities. There-
fore, for Re¿200, the drag and base suction coe�cient and Strouhal number are over pre-
dicted by two-dimensional computations. This observation was made by Mittal [32] for two
and three-dimensional computations for the Re=300 and 1000 �ow past a cylinder. For ex-
ample, the three-dimensional computations for the Re=300 �ow with slip side walls by Mittal
[32], using a very similar �nite element formulation as in this work, results in St=0:203.
The present two-dimensional computations, as expected, result in a slightly larger value of
St (=0:208). Kravchenko et al. [28], from their three-dimensional computations, observed
St=0:203 and �CD=1:28. The corresponding experimental values from Williamson [1] are
0:203 and 1:22. The mean drag coe�cient from the present two-dimensional computations
for Re=300 is 1:357. Mittal and Balachander [33] have suggested that the higher value of
the drag coe�cient for the two-dimensional simulations is caused due to higher level of
Reynolds stresses resulting in a shorter formation length behind the blu� body. Detailed re-
sults for the �ow at low Re(100¡Re¡1000) with the same �nite element formulation as
in this work, and their comparison with experiments, can be found in our earlier papers
[32, 34, 35].
It is clear from Figures 3 and 4 that as the three-dimensional features in the �ow become

increasingly important, the two-dimensional computations over predict the mean drag and
base suction coe�cient for 2× 103¡Re¡3:2× 104. Three very interesting observations can
be made from these �gures. First, consider the variation of −CPB with Re (Figure 4) in the
regime where the �ow is two dimensional. Also shown in the �gure is a straight line that
passes through the data points for Re¡200. It can be observed that the results from two-
dimensional computations for 2× 103¡Re¡3:2× 104 lie close to the line extrapolated from
the two-dimensional behaviour. Also, the di�erence between the results from two-dimensional
calculations and real three-dimensional �ow increases rapidly with Re. A similar observation
was made by Mittal and Balachander [33]. However, their data is for a smaller range of Re.
Higher value of base suction results in larger drag force experienced by the cylinder. Conse-
quently, two-dimensional computations overpredict the drag coe�cient. The second interesting
observation is that the present, two dimensional, computations are able to pick up the sudden
reduction in drag and base suction coe�cient close to the critical Re. This suggests that the
drag crisis is largely a two-dimensional phenomenon. Also, at the critical Re and beyond,
the two-dimensional computations result in a fairly good prediction of the time-averaged drag
coe�cient. The third observation from the two �gures is regarding the behaviour of the �ow
in the supercritical state. Subsequent to the drag crisis, an increase in, both, the mean drag
coe�cient and base suction coe�cient is observed. This behaviour is replicated by the present
computations. Another observation that can be made from Figures 3 and 4 is the excellent
agreement between the results obtained with computations using di�erent meshes. For exam-
ple, meshes M2 and M4 give very similar values for the Re=104 �ow.
The time averaged vorticity �eld and Reynolds stress distribution (u′u′, v′v′ and u′v′) for

various Re are shown in Figure 5. Narrowing of the wake for the Re=106 �ow, compared
to �ow at lower Re, is clearly observed. Our results indicate that the Reynolds stresses are
symmetric about the centre axis and the normal components are, in general, larger than the
shear components. Similar to the observations of Cantwell and Coles [14] and Mittal and
Balachandar [33], it is seen that the v′v′ �eld achieves a peak along the centre axis while the
peaks in u′u′ and u′v′ are achieved o� the �ow axis, within the wake bubble. At Re=100 the
Reynolds stresses close to the cylinder are very small. With increase in Re their magnitude,
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Figure 5. Flow past a cylinder: time-averaged vorticity �eld, and Reynolds stresses
(u′u′, v′v′ and u′v′) for various Re.

close to the cylinder especially in the region of separated shear layer, increases. This suggests
an increased unsteady activity, for higher Re, in that region of the �ow.

4.5. Shear layer instability

Figure 6 shows the instantaneous vorticity �eld for various Re. For the Re=100 and 200
�ow the wake is very organized and the regular von Karman vortex street is observed. At
higher Re, the separated shear layer becomes unstable and smaller vortices form as a result
of this instability. The �uctuations in the velocity �eld due to the shear layer instability are
intermittent and their strength increases with Re. In addition, the point at which the separated
shear layer becomes unstable moves upstream with an increase in Re. Some of these features
can be observed from Figure 6. As is observed for the time averaged �ow, the narrowing of
the wake for the Re=106 �ow is seen here, as well.
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Figure 6. Flow past a cylinder: instantaneous vorticity �eld for various Re.

The time histories of the drag and lift coe�cients for various Re are shown in Figure 7. The
aerodynamic coe�cients exhibit a very organized behaviour for low Re. For Re=100 and 200,
a single frequency, corresponding to the vortex shedding frequency (fK), is observed. The
onset of shear layer instability modi�es this variation. In addition to fK a smaller frequency,
fSL, that corresponds to the oscillations due to the shear layer vortices, sets in. It is seen from
the time variation of the lift coe�cient at Re=104 (Figure 7) that the shear layer instability
is intermittent. It is more regular at larger Re.
Prasad and Williamson [8] studied the shear layer instability via laboratory experiments.

They suggested two techniques for determining the shear layer frequency (fSL). In the �rst
technique, fSL corresponds to the maximum in the broad-band peak of the long-time-averaged
velocity spectra. Since the shear layer instability occurs intermittently, long-time-averaged
velocity spectra appears reduced in amplitude. In the second method, fSL is measured from the
period of shear layer �uctuations using time traces. A statistically signi�cant sample is chosen
to estimate a reasonable value. A histogram between the percentage of total number of shear
layer cycles and frequency is utilized to select fSL. It corresponds to that frequency which
has the most prominent bin in the histogram. Both techniques result in very similar results.
Figure 8 shows the ratio of shear layer and primary vortex shedding frequencies (fSL=fK)
from the present computations for various Re and their comparison with the measurements
from other researchers. The ‘histogram’ technique proposed by Prasad and Williamson [8]
has been utilized in the present work. Good match is observed with the Re0:67 variation for
Re upto 2× 105. This con�rms the observation of Braza et al. [7] that the origin of the
shear layer instability and the subsequent development of small-scale vortices is essentially
a two-dimensional phenomenon. The agreement at Re=106 is poor. This is because at this
Re, the transition point at which the separated shear layer becomes unstable reaches the
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Figure 7. Flow past a cylinder: time histories of drag (solid lines) and lift
(broken lines) coe�cients for various Re.

cylinder surface. Consequently, the generation and time evolution of the shear layer vortices
is in�uenced by the cylinder surface and the boundary layer on it. As a result the separated
boundary layer ceases to behave as a free shear layer. It is clear from this plot that fSL
increases with Re. This is consistent with the vorticity �eld shown in Figure 6 where the
number of shear layer vortices generated=released per unit time increases with Re.

4.6. Drag crisis and shear layer instability

Figure 9 shows close-up views of the instantaneous vorticity �eld at various Re near the
upper and lower surfaces of the cylinder. The reduction in the boundary layer thickness with
the increase in Re has been adequately resolved by an appropriate �nite element mesh near
the cylinder surface. The instability of the separated shear layer and its interaction with the
boundary layer on the cylinder surface can be observed from this �gure. For the Re=3:2× 104
�ow the transition point, for the onset of shear layer instability, is located fairly downstream
of the cylinder. It moves upstream, towards the cylinder, with increase in Re. At Re=105

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:75–98



FLOW PAST A CYLINDER 89

10
+3

10+3

f S
L
/f

K

SL Kf    /f  = 0.0235xRe0.67

SL Kf    /f  = 0.095xRe
0.5

10

10

+2

+1

0
10

10 10 10 10+4 +5 +6 +7

Present study

Re

Figure 8. Flow past a cylinder: variation, with Re, of the shear layer frequency (fSL) normalized with
vortex shedding frequency (fK). The expressions for the Re0:67 and Re0:5 power laws are from Prasad

and Williamson [8] and Kourta et al. [5], respectively.

Figure 9. Flow past a cylinder: close-up view, near the upper and lower shoulder of the cylinder, of
the instantaneous vorticity �eld for various Re.

the shear layer becomes unstable shortly downstream of the point of �ow separation from the
cylinder surface. At Re=106 the point of instability reaches very close to the un-separated
boundary layer on the surface of the cylinder. As a result of these eddies the boundary layer
experiences mixing with the outer �ow causing reattachment of �ow and delay of separation.
This is associated with narrowing of wake and signi�cant reduction in drag and base suction
coe�cients. At Re=107, the instability of the shear layer propagates further upstream and
causes mixing of a signi�cant portion of the boundary layer prior to its eventual separation.
The mixing of �ow results in a signi�cant increase in the Reynolds stresses in this region.
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Figure 10. Flow past a cylinder: close-up view of the u′v′ distribution. The averaging
has been done for one shear layer cycle.

Figure 10 shows the Reynolds shear stress near the cylinder surface in the region of �ow
separation. The time averaging for u′v′ shown in this �gure has been carried out for one shear
layer cycle for each case.
These results suggest that the transition of the boundary layer, on the surface of cylinder, is

initiated by the instability of the separated shear layer. For the sub-critical �ow, the instability
of the separated shear layer commences su�ciently downstream of the point of separation.
At the critical Reynolds number, the separated laminar boundary layer experiences signi�cant
mixing shortly downstream of its separation, due to the eddies generated by the shear layer
vortices. This marks the transition of the separated boundary layer from laminar to turbulent
and causes the �ow to reattach. The eventual separation of the re-attached �ow occurs at a
much downstream location and results in drag crisis. For higher Re the shear layer instability
moves upstream and so does the transition point of the boundary layer. Eventually, the entire
boundary layer on the cylinder surface becomes turbulent. This results in an increase in the
drag experienced by the cylinder due to the increased skin-friction on its surface. This can also
be observed from Figure 3 which shows the variation in the time-averaged drag coe�cient
for various Re. As is observed from experimental data, the drag coe�cient for Re=107 is
larger than that at Re=106.
Shown in Figure 11 is the instantaneous vorticity �eld for the Re=106 �ow along with

the velocity pro�les (in wall co-ordinates) at certain locations. Also shown, in broken line, is
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Figure 11. Re=106 �ow past a cylinder: instantaneous vorticity �eld and velocity pro�les at vari-
ous stations in wall co-ordinates. Positive vorticity is shown in solid lines and negative in broken
lines. Also shown in broken lines is the velocity pro�le in the viscous sublayer and log layer in a

turbulent boundary layer on a �at plate.

the velocity pro�le in the viscous sub-layer and log layer for a turbulent boundary layer on
a �at plate. These plots indicate that the present simulations are �ne enough to resolve the
boundary layer and the associated �ow structures of similar scale close to the cylinder. The
velocity pro�le at station (a), before the �ow separates from the surface of cylinder, matches
that for a laminar boundary layer over �at plate. Shortly downstream of the �ow separation,
the shear layer eddies cause mixing of �ow leading to the reattachment of boundary layer.
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Figure 12. Flow past a cylinder: pressure distribution on the surface of the cylinder
for the time averaged �ow �eld.

At stations shortly downstream of this phenomenon, the velocity pro�le looks similar to that
of a turbulent boundary layer over a �at plate in adverse pressure gradient. The presence of
the log layer is indicative of a possible turbulent boundary layer. In contrast, for the Re=105

�ow, the log layer is observed at locations su�ciently downstream of the point of separation
after the �ow has undergone intense mixing. The present simulations are not �ne enough to
resolve the random turbulent �uctuations. However, it appears that at least the large-scale
structures that are mainly responsible for the transition of boundary layer are su�ciently
resolved in these computations.
Figure 12 shows time averaged pressure coe�cient (CP) distribution on the surface of the

cylinder. It is observed that CP at �=0, the front stagnation point, is more than 1.0 for low
Re, for example, at Re=100. This is consistent with the observations of earlier researchers.
With increase in Re, the peak suction pressure coe�cient (−CP) increases. As is seen from
Figure 4, the base pressure coe�cient (CP at �=180◦) �rst decreases (achieves a larger
negative value) with Re and than increases. Compared to the �ow at Re=105, the delay in
�ow separation for Re=106 results in a higher peak suction, near the shoulder of the cylinder,
and a higher base pressure. The higher base pressure results in a lower drag coe�cient. It is
also seen that for the Re=106 �ow, the two-dimensional LES with a Smagorinsky turbulence
model results in virtually identical pressure distribution as the model free computations.
The pressure distribution for Re=105 shows a second local suction peak on the surface of

the cylinder. This secondary peak occurs beyond the shoulder of the cylinder and points to the
presence of a local recirculation zone close to the surface. Figure 13 shows the time averaged
streamlines for the �ows at Re=2000, 105 and 106. It is observed that the Re=2000 �ow is
associated with two recirculation zones on each half of the cylinder. However, they are located
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Figure 13. Flow past a cylinder: streamlines for the time averaged
�ow �eld for Re=2000, 105 and 106.
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away from the surface of the cylinder and the speed of �ow in these regions is relatively small.
Consequently, their e�ect is not felt by the surface CP distribution. At Re=105, downstream of
the separation point, the speed of the �ow in the reverse �ow region is quite high very close to
the surface of the cylinder. This results in a local peak in the suction pressure. At Re=106,
it disappears again because of the delay in �ow separation. The time-averaged streamlines
and pressure distributions suggest that the Re=105 is associated with a recirculatory
laminar ‘bubble’ close to the cylinder, immediately downstream of the point of �ow separation.
At higher Re, the shear layer vortices cause the �ow to become turbulent and the laminar
bubble bursts.
The time averaged �ow from the present computations appear symmetric about the x-axis

for Re=106. The �ow at Re=105 clearly shows some asymmetry. Schewe [36] conducted
force measurements in a pressurized wind tunnel from subcritical up to transcritical Re, i.e.
2:3× 1046Re67:1× 106. It was shown in this study that asymmetric �ow separation with
the generation of non-zero steady lift in critical regime (2:8× 1056Re63:5× 105), of both
the positive and negative sign, is a fundamental phenomenon. This phenomenon is marked
by two discontinuous transitions, i.e. drop and jump in CD and St. After the �rst transition,
the �ow achieves a bistable asymmetric state consisting of two stable states corresponding to
positive and negative lift force. The second transition is characterized by further jump and
drop in St and CD and the abrupt disappearance of the steady lift. Bearman [37] examined
the �ow around a circular cylinder over the Re range 105 to 7:5× 105. A discontinuity was
recorded at Re∼ 3:4× 105 in the variation of the base pressure coe�cient. This is caused
by the appearance of a laminar separation bubble forming on only one side of the cylinder.
This appearance extends up to Re=3:8× 105. At both the ends of the regime, marked by
the laminar separation bubble, discontinuous drop and jump in Strouhal number and the drag
coe�cient, respectively, are observed. Detailed computations close to Rec need to be carried
out to further investigate this behaviour of the �ow.

4.7. Energy spectra

In this section results are presented for the energy spectra of the �ow. To construct a spectrum
of the energy at various spatial scales, the solution obtained from the Navier–Stokes equations
over an unstructured mesh is interpolated on a structured mesh. The two dimensional, dis-
crete fast Fourier transform (FFT) of the velocity �eld is carried out by using the subroutines
in the library from the numerical algorithm group (NAG). The temporal spectrum is con-
structed by sampling the time history of the velocity at a point (x=D=0:26; y=D= − 0:46)
with respect to the centre of the cylinder.
In three-dimensional turbulence, energy injected into a �ow system at a low wavenumber

cascades to higher wave numbers via vortex stretching. In this inertial range the structure
of energy density E(k) is determined solely by the non-linear interactions while the total
energy

∫
E(k) dk is conserved. In the inertial range E(k) varies as k−5=3 down to the length

scales where viscous e�ects cause a rapid decay of E(k). In two-dimensional �ows, the vortex
stretching mechanism is absent. Consequently, both, energy (

∫
E(k) dk) and enstrophy (square

of L2 norm of vorticity,
∫
� |!|2 d�) are conserved. This implies that any �ow of energy from

low to high wave numbers is accompanied with another �ux, back from small to larger
length scales. This characteristic of two-dimensional turbulence is called inverse cascade [38].
The enstrophy cascade follows the k−3 law. More details on two-dimensional turbulence
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can be found in Paret and Tabeling [39], Frisch [40], Doering and Gibbon [41] and
Lesieur [42].
It is well known that even for high subcritical Re the �ow in the wake, outside the boundary

layer, is turbulent. The spatial power spectra for the Re=106 �ow is shown in Figure 14. The
mesh used for the �ow computations is M5. The velocity �eld is interpolated on a structured
grid with 3648× 1536 nodes. As expected in two-dimensional isotropic turbulence, both, k−3
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and k−5=3 variations of E(k) are observed. The power spectra corresponding to the time history
of the velocity at a point in the wake is shown in Figure 15. The frequency in the time domain
is non-dimensionalized with the vortex shedding frequency. A similar distribution, as in the
spatial spectrum, is observed.

5. CONCLUDING REMARKS

Flow past a circular cylinder is simulated for Re=100–107 via a stabilized �nite element
formulation in two dimensions. The computations with and without a sub-grid scale model
lead to very similar results. As expected, beyond Re∼ 200, the two-dimensional computations
are unable to predict the correct value of drag coe�cient. However, the phenomenon of
drag-crisis is predicted quite well. For Re∼ 2000 and larger, in addition to the primary wake
instability, the instability of the separated shear layer is observed. The mesh close to the
cylinder is �ne enough to resolve the boundary layer and its interaction with the shear layer
instability. It is found that the ratio of the shear layer and vortex shedding frequencies varies
as Re0:67, in agreement with results from other researchers. The transition point beyond which
the separated shear layer becomes unstable moves upstream with Re. The unstable shear layer
is responsible for the small-scale vortices. At a certain critical Reynolds number (Rec), the
transition point moves very close to the separation point leading to an interaction between
the boundary layer and the shear layer vortices. These vortices cause mixing of �ow in the
boundary layer, thereby energizing it and leading to its reattachment. An increase in the
Reynolds shear stress near the separation point is observed as a result of this vortical activity.
The entire boundary layer, till the point of separation, is laminar for Re¡Rec. At Re=Rec
even though a signi�cant part of the boundary layer is laminar, the latter part, beyond the
point of reattachment, undergoes a transition to a turbulent state. The �ow is associated with
narrowing of wake and a signi�cant reduction in the time-averaged drag- and base suction
coe�cients. Beyond Rec, the boundary layer achieves a turbulent state well ahead of the �ow
separation. This leads to increased skin friction and drag coe�cient.
The transition of the boundary layer to a turbulent state is also observed from the velocity

pro�les. These computations highlight a possible mechanism that lead to the transition of
the boundary layer �ow. The interaction between the shear layer eddies and the boundary
layer plays a major role in the transition. The computations also suggest that the genesis and
development of the shear layer vortices and their interactions with the boundary layer leading
to its transition to a turbulent state is primarily a two-dimensional phenomenon. Almost all the
features of the �ow are captured by the present two-dimensional computations, qualitatively.
Three-dimensional e�ects need to be accounted for to obtain good quantitative comparisons
with experimental results. Although the present computations do not utilize grids that are �ne
enough to resolve the random �uctuations associated with transitional �ows, yet, most of the
�ow features are predicted reasonably well. This shows that the large-scale �ow structures
play a primary role in this transition process.
The spatial and temporal energy spectra for the Re=106 �ow have been studied. It is found

that the energy spectrum exhibits the structure of two-dimensional isotropic homogeneous
turbulence. The k−3 and k−5=3 variation of E(k), for k higher and lower than the energy
injection scale, respectively, is observed.
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